Solid-state cryomilling for porogen mixing and porous scaffold fabrication - biomed 2011.

نویسندگان

  • Rula M Allaf
  • Iris V Rivero
چکیده

Several widely used techniques for the fabrication of three dimensional (3D) scaffolds utilize the particulate leaching method to achieve a porous structure. This method involves the selective leaching of a mineral or an organic compound to generate pores. However, scaffolds prepared by this technique tend to exhibit limited interconnectivity. Therefore, to enhance the interconnectivity of the scaffolds fabricated by particulate leaching, a polymeric porogen can be added during processing. Typically porogens are mixed into a polymer solution, powder, or melt. The mixture is subsequently cast, molded, or extruded, and then leaching the porogens results in porous scaffolds. Still, even though scaffold interconnectivity is improved through the addition of polymer porogens, particulate leaching does not yield scaffolds with uniform properties. This research introduces a new solventless approach, cryomilling, to blend porogens and attain interconnected porous scaffolds with uniform morphologies. To validate the efficacy of the suggested approach a comparison of the effect of various solid-state mixing approaches on scaffold morphology and mechanical properties will be made. In this study, salt particles and poly(ethylene oxide) (PEO) were mixed (manually or through cryomilling) with poly(e-caprolactone) (PCL) for the preparation of porous 3D PCL scaffolds, the mixtures were then compression molded, and subsequently, water was used to leach the porogens. Morphological and compressive properties of the resulting scaffolds will be discussed. This simple, novel, economical, organic solvent-free approach for the fabrication of 3D interconnected porous scaffolds holds promise for tissue engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Porous Scaffolds with a Controllable Microstructure and Mechanical Properties by Porogen Fusion Technique

Macroporous scaffolds with controllable pore structure and mechanical properties were fabricated by a porogen fusion technique. Biodegradable material poly (d, l-lactide) (PDLLA) was used as the scaffold matrix. The effects of porogen size, PDLLA concentration and hydroxyapatite (HA) content on the scaffold morphology, porosity and mechanical properties were investigated. High porosity (90% and...

متن کامل

Novel polymeric scaffolds using protein microbubbles as porogen and growth factor carriers.

Polymeric tissue engineering scaffolds prepared by conventional techniques like salt leaching and phase separation are greatly limited by their poor biomolecule-delivery abilities. Conventional methods of incorporation of various growth factors, proteins, and/or peptides on or in scaffold materials via different crosslinking and conjugation techniques are often tedious and may affect scaffold's...

متن کامل

Characteristics of Heparin-functionalized Porous PLGA Scaffold for Tissue Regeneration

Statement of Purpose: The aim of this study is to develop highly functional biomimetic scaffolds with specific bioactivity by using novel porogen and plasma treatment for cartilage tissue engineering. Solid hydrogen peroxide compounds, such as urea hydrogen peroxide and sodium percarbonate are well-known commercial products used as a bleaching agent, antiseptic and disinfectant. Urea hydrogen p...

متن کامل

The Fabrication and Characterization of Poly(lactic acid) Scaffolds for Tissue Engineering by Improved Solid–Liquid Phase Separation

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------...

متن کامل

Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering.

Drop on demand printing (DDP) is a solid freeform fabrication (SFF) technique capable of generating microscale physical features required for tissue engineering scaffolds. Here, we report results toward the development of a reproducible manufacturing process for tissue engineering scaffolds based on injectable porogens fabricated by DDP. Thermoplastic porogens were designed using Pro/Engineer a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical sciences instrumentation

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2011